Models of Set Theory II - Winter 2013

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht

Problem sheet 7

Problem 25 (8 Points). Let $e n d_{T}$ denote the set of end nodes of a tree T. A Borel code for a subset of ${ }^{\omega} \omega$ is a pair (T, f, g), where T is a subtree of ${ }^{<\omega} \omega$ with no infinite branches and $f: T \backslash e n d_{T} \rightarrow 3, g: e n d_{T} \rightarrow{ }^{<\omega} \omega$ are functions. If (T, f, g) is a Borel code and $t \in T$, the set $\mathcal{B}_{(T, f, g, t)}$ is defined as
(i) $U_{g(t)}:=\left\{x \in{ }^{\omega} \omega \mid g(t) \subseteq x\right\}$ if $t \in e n d_{T}$,
(ii) ${ }^{\omega} \omega \backslash \mathcal{B}_{(T, f, g, t \sim i)}$ if $f(t)=0$ and i is least with $t \curvearrowright i \in T$,
(iii) $\bigcup_{t \neg i \in T} \mathcal{B}_{(T, f, g, t \vee i)}$ if $f(t)=1$,
(iv) $\bigcap_{t \neg i \in T} \mathcal{B}_{(T, f, g, t \vee i)}$ if $f(t)=2$,
and $\mathcal{B}_{(T, f, g)}:=\mathcal{B}_{(T, f, g, \emptyset)}$ denote the Borel set coded by (T, f, g). Suppose that $M \subseteq$ N are transitive models of ZFC.
(a) Suppose that T is a subtree of ${ }^{<\omega} \omega$ in M. Show that T has no infinite branches in M if and only if T has no infinite branches in N.
(b) Suppose that (T, f, g) is a Borel code in M. Show that (T, f, g) is a Borel code in N and that

$$
M \vDash " \mathcal{B}_{(T, f, g)} \text { is meager" } \Longleftrightarrow N \vDash " \mathcal{B}_{(T, f, g)} \text { is meager". }
$$

(You should use without proof the fact that for all Borel codes (T, f, g), $\left(T^{\prime}, f^{\prime}, g^{\prime}\right)$ in M, the statement $" \mathcal{B}_{(T, f, g)} \subseteq \mathcal{B}_{\left(T^{\prime}, f^{\prime}, g^{\prime}\right)}$ " is absolute between $M \operatorname{and} N$.)

Problem 26 (6 Points). Suppose that (X, d) is Polish space, i.e. X is separable and d is a complete metric on X. Suppose that $\left(U_{s}\right)_{s \in \omega_{\omega}}$ is a family of subsets of X with the following properties.
(i) $U_{s^{\wedge} i} \cap U_{s^{\wedge}}=\emptyset$ for $i \neq j$,
(ii) $U_{s\urcorner i} \subseteq U_{s}$,
(iii) U_{s} is closed and open, and
(iv) $\lim _{n \rightarrow \infty} \operatorname{diam}\left(U_{x \upharpoonright n}\right)=0$ for all $x \in{ }^{\omega} \omega$.

Let $D=\left\{x \in{ }^{\omega} \omega \mid \bigcap_{n \in \omega} U_{x \upharpoonright n} \neq \emptyset\right\}$ and $f: D \rightarrow^{\omega} \omega$, where $f(x)$ is the unique element of $\bigcap_{n \in \omega} U_{x \upharpoonright n}$. Prove that D is closed and that f is a homeomorphism onto its image.

Problem 27 (4 Points).
(a) Suppose that C is a countable dense set of the real line \mathbb{R}. Show that $\mathbb{R} \backslash C$ is homeomorphic to the Baire space ${ }^{\omega} \omega$.
(b) Show that the cardinal characteristics associated to the meager ideals on ${ }^{\omega} \omega$ and \mathbb{R} are equal.

Problem 28 (4 Points). Let \mathfrak{u} denote the least cardinality of a family of subsets of ω which generates a nonprincipal ultrafilter on ω. Show that $\mathfrak{b} \leq \mathfrak{u}$.
(Hint: For $X \in[\omega]^{\omega}$, let g_{X} denote the increasing enumeration of X. For an increasing function $f: \omega \rightarrow \omega$, let S_{f} denote the union of the intervals $\left[f^{2 n}(0), f^{2 n+1}(0)\right)$ for $n \in \omega$. Show that if an increasing function $f: \omega \rightarrow \omega$ eventually dominates g_{X}, then both $S_{f} \cap X$ and $S_{f} \backslash X$ are infinite.)

