Prof. Dr. Peter Koepke, Dr. Philipp Schlicht Problem sheet 7

Problem 25 (8 Points). Let end_T denote the set of end nodes of a tree T. A Borel code for a subset of ${}^{\omega}\omega$ is a pair (T, f, g), where T is a subtree of ${}^{\langle\omega}\omega$ with no infinite branches and $f: T \setminus end_T \to 3$, $g: end_T \to {}^{\langle\omega}\omega$ are functions. If (T, f, g) is a Borel code and $t \in T$, the set $\mathcal{B}_{(T,f,g,t)}$ is defined as

- (i) $U_{q(t)} := \{x \in {}^{\omega}\omega \mid g(t) \subseteq x\}$ if $t \in end_T$,
- (ii) ${}^{\omega}\omega \setminus \mathcal{B}_{(T,f,q,t^{\gamma}i)}$ if f(t) = 0 and *i* is least with $t^{\gamma}i \in T$,
- (iii) $\bigcup_{t \cap i \in T} \mathcal{B}_{(T,f,g,t \cap i)}$ if f(t) = 1,
- (iv) $\bigcap_{t^{\frown}i\in T} \mathcal{B}_{(T,f,g,t^{\frown}i)}$ if f(t) = 2,

and $\mathcal{B}_{(T,f,g)} := \mathcal{B}_{(T,f,g,\emptyset)}$ denote the *Borel set coded by* (T, f, g). Suppose that $M \subseteq N$ are transitive models of ZFC.

- (a) Suppose that T is a subtree of ${}^{<\omega}\omega$ in M. Show that T has no infinite branches in M if and only if T has no infinite branches in N.
- (b) Suppose that (T, f, g) is a Borel code in M. Show that (T, f, g) is a Borel code in N and that

 $M \vDash "\mathcal{B}_{(T,f,g)}$ is meager" $\iff N \vDash "\mathcal{B}_{(T,f,g)}$ is meager".

(You should use without proof the fact that for all Borel codes (T, f, g), (T', f', g') in M, the statement " $\mathcal{B}_{(T,f,g)} \subseteq \mathcal{B}_{(T',f',g')}$ " is absolute between M and N.)

Problem 26 (6 Points). Suppose that (X, d) is Polish space, i.e. X is separable and d is a complete metric on X. Suppose that $(U_s)_{s \in {}^{<\omega}\omega}$ is a family of subsets of X with the following properties.

- (i) $U_{s^{\frown}i} \cap U_{s^{\frown}j} = \emptyset$ for $i \neq j$,
- (ii) $U_{s^{\frown}i} \subseteq U_s$,
- (iii) U_s is closed and open, and
- (iv) $\lim_{n\to\infty} \operatorname{diam}(U_{x\restriction n}) = 0$ for all $x \in {}^{\omega}\omega$.

Let $D = \{x \in {}^{\omega}\omega \mid \bigcap_{n \in \omega} U_{x \restriction n} \neq \emptyset\}$ and $f: D \to {}^{\omega}\omega$, where f(x) is the unique element of $\bigcap_{n \in \omega} U_{x \restriction n}$. Prove that D is closed and that f is a homeomorphism onto its image.

Problem 27 (4 Points). (a) Suppose that C is a countable dense set of the real line \mathbb{R} . Show that $\mathbb{R} \setminus C$ is homeomorphic to the Baire space ${}^{\omega}\omega$.

(b) Show that the cardinal characteristics associated to the meager ideals on ${}^{\omega}\omega$ and \mathbb{R} are equal.

Problem 28 (4 Points). Let \mathfrak{u} denote the least cardinality of a family of subsets of ω which generates a nonprincipal ultrafilter on ω . Show that $\mathfrak{b} \leq \mathfrak{u}$.

(Hint: For $X \in [\omega]^{\omega}$, let g_X denote the increasing enumeration of X. For an increasing function $f: \omega \to \omega$, let S_f denote the union of the intervals $[f^{2n}(0), f^{2n+1}(0))$ for $n \in \omega$. Show that if an increasing function $f: \omega \to \omega$ eventually dominates g_X , then both $S_f \cap X$ and $S_f \setminus X$ are infinite.)

Please hand in your solutions on Monday, December 09 before the lecture.